Assembly regulatory domain of glial fibrillary acidic protein. A single phosphorylation diminishes its assembly-accelerating property.
نویسندگان
چکیده
Phosphorylation of glial fibrillary acidic protein (GFAP) induces disassembly of the filaments. An amino-terminal fragment of bovine GFAP (G-Hf) was produced by lysylendopeptidase digestion. G-Hf formed ribbon-like filaments in the presence of GFAP even in low ionic strength, whereas the fragment itself did not form any structures. Only one (PK3) of the five V8 protease fragments of G-Hf accelerated GFAP assembly to the same degree as G-Hf did, whereas the other fragments did not. When PK3 was cleaved into two fragments, it lost the assembly-accelerating property. The sequence of PK3 was determined as RRRVTSATRRSYVSSSE, which corresponded to residues 3-19 of porcine GFAP. It was concluded that PK3 contains a sequence indispensable for GFAP assembly and that neither PK1 (RRRVTS) nor PK2 (ATRRSYVSSSE) included all of the sequence. A single phosphorylation of PK3 by cyclic AMP-dependent protein kinase diminished its assembly-accelerating property. The phosphorylation site was determined as Ser-12 of porcine GFAP. It was shown that single phosphorylation of the amino-terminal head domain, which contains an indispensable sequence for GFAP assembly, might be sufficient for GFAP disassembly.
منابع مشابه
Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein.
The non-alpha-helical N-terminal domain of intermediate filament proteins plays a key role in filament assembly. Previous studies have identified a nonapeptide motif, SSYRRIFGG, in the non-alpha-helical N-terminal domain of vimentin that is required for assembly. This motif is also found in desmin, peripherin and the type IV intermediate filament proteins. GFAP is the only type III intermediate...
متن کاملThe endless story of the glial fibrillary acidic protein.
All intermediate filament proteins consist of an alpha-helical rod domain flanked by non-helical N-terminal head and C-terminal tail domains. The roles of the non-helical domains of various intermediate filament proteins in the assembly and co-assembly of higher-order filamentous structures have been studied by many groups but with quite contradictory results. Type III intermediate filaments ar...
متن کاملPhosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain.
Glial fibrillary acidic protein (GFAP), the intermediate filament component of astroglial cells, can serve as an excellent substrate for both cAMP-dependent protein kinase and protein kinase C, in vitro. GFAP phosphorylated by each protein kinase does not polymerize, and the filaments that do polymerize tend to depolymerize after phosphorylation. Dephosphorylation of phospho-GFAP by phosphatase...
متن کاملEffect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury
Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...
متن کاملDisrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed predominantly in astrocytes. The study of its expression in the astrocyte lineage during development and in reactive astrocytes has revealed an intricate relationship with the expression of vimentin, another intermediate filament protein widely expressed in embryonic development. these findings suggested that v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 267 32 شماره
صفحات -
تاریخ انتشار 1992